Takeover Bidding

Professor B. Espen Eckbo Dartmouth and NHH 2010

Total takeover gains

- Value-weighted sum of gains to bidders and targets is on average positive
- However, bidder gains are on average small. Why?
 - Competition among bidders drives synergy gains to target shareholders
 - Bidder asset size on average ten times the size of the target.
 Thus, an equal dollar gain translates into one-tenth the percentage gain
 - Bidders are frequent acquirers, creating partial anticipation of takeover which attenuates bidder return estimates
- Hubris and overbidding? Bidder trying to sell overpriced stock?
 - Possible, and likely in some cases, but not true on average

Firm size and bidder announcement returns

3-day announcement bidder ACAR, 1980-2005

		Public targets		Private targets	
		N	ACAR	N	ACAR
Large bidders: (top quartile MV)	All cash:	769	-0.022**	445	0.001
	All stock	439	-0.003**	88	0.003**
Small bidders: (bottom quartile MV)	All cash:	495	0.001	872	0.065**
	All stock:	190	0.031**	184	0.018**

Initial Bids

- What should be the opening bid?
 - Start high to preempt competition?
- Will the information in the opening bid be exploited by rival bidders?
 - Mandatory information disclosure
 - Mandatory minimum offer period
- What other offer parameters are important?
 - Toeholds, payment method, target attitude, target stock price runup, etc.

Toehold bidding

- Dramatic drop in toehold frequency
- About 10% of 10,000+ initial bidders have toehold (mostly long-term)
- About 2% of initial bidders purchase toeholds during the 6-months leading up to the bid
- When positive, toehold are large (15%)
- When hostile, 50% have toeholds

Toehold puzzle

- Toehold benefits:
 - Short-term return on toehold (α)—possibly as big as the target premium itself
 - Only needs to purchase (1- α) at offer price
 - May resolve target free-rider problem
 - Increase bidder valuation and so increases the probability of winning
- So, what deters toeholds?

Eckbo (38) 19

Potential toehold costs

- Bidder toehold benefits mirrors target toehold costs
 - Toehold bidding may be viewed as "aggressive"
- So, target may oppose toehold bidding
 - Refuse to negotiate if bidder has toehold
 - Refusal costly to a bidder that wants to negotiate
- Optimal toehold
 - If the target response depends on the toehold:
 - · Either zero or greater than a threshold value
 - If the target response independent of the toehold:
 - · Always positive

Eckbo (38) 20

10

Toehold-induced overbidding

- If B1 wins, payoff is v_1 -(1- α) p_2 with prob. $G(p_1)$
- If B1 loses, gets αp_1 with prob. 1-G(p_1)

$$E(\Pi_1) = v_1 G(p_1) - (1 - \alpha) \int_0^{p_1} p_2 g(p_2) dp_2 + \alpha p_1 [1 - G(p_1)]$$

$$\boxed{p_1^* = v_1 + \alpha \frac{1 - G(p_1^*)}{g(p_1^*)}} \qquad \qquad \text{For uniform distribution} \\ p_1^* = \frac{v_1 + \alpha}{1 + \alpha}$$

For uniform distribution:

$$p_1^* = \frac{v_1 + \alpha}{1 + \alpha}$$

Eckbo (38)

Bidding with lockup/breakup fee

- Lockup: $p_1^* = \frac{1}{1+\alpha} [v_1 + \alpha p_L + \alpha \frac{1 G(p_1^*)}{g(p_1^*)}]$
- Breakup fee: $p_1^* = v_1(1-t)$

In other words:

- Toehold bidding is "aggressive" (overbidding)
- Breakup fee is "coercive" (underbidding)
- Bidding with lockup is in between (depends on p₁)

When all bids fail:

- AR if target ultimately unsuccessful
 - -Initial bid is a merger: -10% (z=-2.9)
 - -Initial bid is a tender offer: 2.4% (z=2.0)
- Does this drive toeholds to zero?
 - Unlikely: cross-sectional regressions show that the target price drop when all bids fail is smaller when bidder has a toehold

Why not copy the bidder?

- Could target management adopt the bidder's valueincreasing policy for the target?
- If so, the takeover bid will cause a <u>permanent</u> increase in the target share price <u>regardless</u> of the outcome of the offer.
- The evidence indicates the opposite: the target valueimprovement seen at the time of the initial offer announcement is reversed if the target firm remains independent.
- In other words, target gains are conditioned on a control change

Eckbo (38)

The payment method

- Types:
 - All-cash
 - All-stock
 - Mixed cash-stock (possibly with debt as well)
- Hypotheses:
 - Taxes
 - Asymmetric information
 - Capital structure and corporate control
 - Behavioral

Asymmetric information costs

- Expected overpayment cost of cash
- Expected overpayment cost of securities
- Expected undervaluation costs
- Expected loss of synergy gains from a failed offer

<u>Case A</u>: Bidder value B is common knowledge. Target value T is private

- T* = maximum target value.
- Bidder decides to offer T* in order to succeed with probability 1
- Compute expected over payment costs (OC) as a function of payment type
- E(OC)=expected value of payment minus expected value of target if it accepts
- <u>All-cash offer</u>: C*=T*
 E(OC) = T* E(T | accept) >0 (1)

Eckbo (38) 2

- All-cash offer: C*=T*
 E(OC) = T* E(T|accept) >0 (1)
- All-stock offer: Z*(B+T*) = T*

where Z=fraction of merged firm

$$E(OC) = Z^*[B + E(T|accept)] - E(T|accept)$$

=
$$[B/(B + T^*)][T^* - E(T|accept)] > 0$$
 (2)

• (1) > (2) because B/(B + T*) < 1

So, in Case A the bidder prefers stock...

- <u>Intuition</u>: Suppose the bidder overpaid (T<T*):
 - The value of the cash payment ex post is not contingent on the realized value of T. So no change in the overpayment
 - The value of bidder stocks used to pay for the target falls, effectively reducing the overpayment ex post

Eckbo (38)

Case B:

T is common knowledge, B is private

- <u>All-cash bid</u>: C=T E(OC) = 0
- All-stock bid:

Let B* denote target's valuation of bidder $Z^*[B^*+T]=T$ or $Z^*=T/(B^*+T)$ $E(OC) = [T/(B^*+T)](B+T) - T$ E(OC)>0 if $B^*>B$ (target undervalues B) E(OC)<0 if $B^*>B$ (target overvalues B)

Case C:

Two-sided information asymmetry
Neither part knows the true value of the other

- All-cash offer: C*=T*
- All-stock offer: Z*(B*+T*)=T*

Expected OC of all-stock bid minus expected OC of all-cash bid =

T*[(B-B*)-(T*-R(T|accept)]/[B+E(T|accept)]

which can be either positive or negative

Eckbo (38)

Case D:

Two-sided information asymmetry and mixed cashstock offer

- Mixed offer: C+Z(B*-C+T*)=T*
 Z=(T*-C)/(B*-C+T)
- There exists an equilibrium in which:
 - The most overvalued bidder selects all-stock
 - Higher-valued bidders separate themselves from lowervalued bidders by increasing the proportion of the deal paid in cash (C/T*)
- In this equilibrium, bidder announcement returns are increasing in C/T*

Additional hypotheses (Table 4 in BET-08)

- Consideration in addition to taxes and information asymmetries:
 - Capital structure motives
 - Long-term target leverage ratios?
 - Pecking order story?
 - Managerial control motives
 - All-stock offer creates a large, possibly controlling blockholder
 - May prefer to raise cash by issuing debt or a pre-bd public equity offer instead

Payment method interacts with target status

- When the target is public, bidder announcement returns are on average negative in all-stock offers, and increasing in the cash portion of the offer
- When the target is a private company, all-stock offers generate positive bidder announcement returns which are as high (if not higher) than in all-stock offers

